#!/bin/bash download_and_build_model() { local model_name="$1" local model_url="" case "$model_name" in "tiny.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt" ;; "tiny") model_url="https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt" ;; "base.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt" ;; "base") model_url="https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt" ;; "small.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt" ;; "small") model_url="https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt" ;; "medium.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt" ;; "medium") model_url="https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt" ;; "large-v1") model_url="https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt" ;; "large-v2") model_url="https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt" ;; "large-v3" | "large") model_url="https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt" ;; *) echo "Invalid model name: $model_name" exit 1 ;; esac echo "Downloading $model_name..." # wget --directory-prefix=assets "$model_url" # echo "Download completed: ${model_name}.pt" if [ ! -f "assets/${model_name}.pt" ]; then wget --directory-prefix=assets "$model_url" echo "Download completed: ${model_name}.pt" else echo "${model_name}.pt already exists in assets directory." fi local output_dir="whisper_${model_name//./_}" echo "$output_dir" echo "Running build script for $model_name with output directory $output_dir" python3 build.py --output_dir "$output_dir" --use_gpt_attention_plugin --use_gemm_plugin --use_bert_attention_plugin --model_name "$model_name" echo "Whisper $model_name TensorRT engine built." echo "=========================================" echo "Model is located at: $(pwd)/$output_dir" } if [ "$#" -lt 1 ]; then echo "Usage: $0 [model-name]" exit 1 fi tensorrt_examples_dir="$1" model_name="${2:-small.en}" cd $1/whisper pip install --no-deps -r requirements.txt download_and_build_model "$model_name"