78 lines
3.3 KiB
Bash
78 lines
3.3 KiB
Bash
#!/bin/bash
|
|
|
|
download_and_build_model() {
|
|
local model_name="$1"
|
|
local model_url=""
|
|
|
|
case "$model_name" in
|
|
"tiny.en")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt"
|
|
;;
|
|
"tiny")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
|
|
;;
|
|
"base.en")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt"
|
|
;;
|
|
"base")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt"
|
|
;;
|
|
"small.en")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt"
|
|
;;
|
|
"small")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt"
|
|
;;
|
|
"medium.en")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt"
|
|
;;
|
|
"medium")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt"
|
|
;;
|
|
"large-v1")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt"
|
|
;;
|
|
"large-v2")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt"
|
|
;;
|
|
"large-v3" | "large")
|
|
model_url="https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt"
|
|
;;
|
|
*)
|
|
echo "Invalid model name: $model_name"
|
|
exit 1
|
|
;;
|
|
esac
|
|
|
|
echo "Downloading $model_name..."
|
|
# wget --directory-prefix=assets "$model_url"
|
|
# echo "Download completed: ${model_name}.pt"
|
|
if [ ! -f "assets/${model_name}.pt" ]; then
|
|
wget --directory-prefix=assets "$model_url"
|
|
echo "Download completed: ${model_name}.pt"
|
|
else
|
|
echo "${model_name}.pt already exists in assets directory."
|
|
fi
|
|
|
|
local output_dir="whisper_${model_name//./_}"
|
|
echo "$output_dir"
|
|
echo "Running build script for $model_name with output directory $output_dir"
|
|
python3 build.py --output_dir "$output_dir" --use_gpt_attention_plugin --use_gemm_plugin --use_bert_attention_plugin --model_name "$model_name"
|
|
echo "Whisper $model_name TensorRT engine built."
|
|
echo "========================================="
|
|
echo "Model is located at: $(pwd)/$output_dir"
|
|
}
|
|
|
|
if [ "$#" -lt 1 ]; then
|
|
echo "Usage: $0 <path-to-tensorrt-examples-dir> [model-name]"
|
|
exit 1
|
|
fi
|
|
|
|
tensorrt_examples_dir="$1"
|
|
model_name="${2:-small.en}"
|
|
|
|
cd $1/whisper
|
|
pip install --no-deps -r requirements.txt
|
|
|
|
download_and_build_model "$model_name"
|